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Abstract Earthquake simulation on synthetic fault networks carries great potential
for characterizing the statistical patterns of earthquake occurrence. I present an earth-
quake simulator based on elastic dislocation theory. It accounts for the effects of in-
terseismic tectonic loading, static stress steps at the time of earthquakes, and post-
earthquake stress readjustment through viscoelastic relaxation of the lower crust
and mantle. Earthquake rupture initiation and termination are determined with a
Coulomb failure stress criterion and the static cascade model. The simulator is applied
to interacting multifault systems: one, a synthetic two-fault network, and the other, a
fault network representative of the San Francisco Bay region. The faults are discre-
tized both along strike and along dip and can accommodate both strike slip and dip
slip. Stress and seismicity functions are evaluated over 30,000 yr trial time periods,
resulting in a detailed statistical characterization of the fault systems. Seismicity func-
tions such as the coefficient of variation and a- and b-values exhibit systematic pat-
terns with respect to simple model parameters. This suggests that reliable estimation of
the controlling parameters of an earthquake simulator is a prerequisite to the inter-
pretation of its output in terms of seismic hazard.

Introduction

Earthquake occurrence is to a large extent controlled by
the evolution of crustal stress. This is supported by numerous
studies of static stress triggering, as well as the existence of a
persistent stress shadow (inhibition of earthquakes) follow-
ing the 1906 earthquake (Stein, 1999). Long-term seismicity
rates, fault interactions, and patterns of moderate to large
earthquakes are products of models of fault systems con-
trolled by the mechanics of crustal deformation over long
time periods (Ward and Goes, 1993; Rundle et al., 2005,
2006a). Understanding how such systems evolve in time
under a relevant set of governing physical laws is a needed
critical step toward reliable earthquake forecasting. Our
understanding of the mechanics of crustal deformation has
advanced to the point where we may address the issues
relevant to probabilistic seismic hazard analysis (PSHA) with
numerical simulations of seismicity.

An earthquake simulator essentially provides a means of
tracking the increasing tectonic stress as it loads the faults,
determines when a rupture initiates on one or more faults,
how much and where a fault slips in an earthquake, and how
stress is redistributed among the network faults as the result
of an earthquake. Existing algorithms demonstrate the great
potential of earthquake simulators for quantifying aspects of
earthquake occurrence that are traditionally based on frag-
mentary geologic information or simply expert opinion. This
includes the measures of coefficient of variation (COV), the

triggering capability of moderate earthquakes, and the like-
lihood of earthquakes rupturing through fault segment
boundaries. In the context of elastic dislocation theory,
Richards–Dinger and Dieterich (2007) have implemented
an earthquake simulator on single-fault and multifault net-
works that accounts for rate-and-state friction effects during
both the coseismic and interseismic time periods, as well as
static stress steps; the same physics also determines the ini-
tiation and termination of ruptures. Ward (2000) and Rundle
et al. (2006b) have implemented a large network of interact-
ing faults in California that accounts for interseismic loading
controlled by known fault slip rates, as well as static stress
steps; they determine the initiation and termination of earth-
quake ruptures through a Coulomb failure stress criterion
combined with a static cascade model. Although recognized
as an important ingredient, none of the existing approaches
account for viscoelastic stress transfer.

In this article I present an algorithm for generating syn-
thetic seismicity in a fault network that includes the follow-
ing elements (Fig. 1): (1) tectonic loading of a plate boundary
zone, (2) coseismic stress steps at the time of earthquakes,
and (3) viscoelasticity, through which stress is redistributed
during interseismic time intervals through relaxation of the
ductile lower crust and mantle. Earthquake ruptures are ap-
proximated using the static cascade model. All elements are
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implemented in an interacting multifault network discretized
both along strike and along dip.

With this simulator we may address many outstanding
questions in PSHA. For example, what factors control COV
and interaction probabilities (e.g., triggering capability of
moderate earthquakes) on individual faults? How do these
measures vary from fault to fault? What role does stress
transfer play in shaping seismicity patterns on individual
faults? How sensitive are these patterns to viscoelastic stress
transfer? Do ruptures tend to initiate in the deeper crust and
propagate upward?

Stress Evolution in a Viscoelastic Coupling Model

Pollitz and Schwartz (2008) developed expressions for
stress evolution in a viscoelastic system where rupture of a
given fault is periodic with identical slip in each event. We
follow their development but drop the requirement that the
ruptures occur periodically; in the present treatment, rupture
of a given fault patch need only occur with a mean definite
slip rate. Stress accumulated at point r up to time t starting
from a time t0 is a combination of accumulated coseismic
stress, postseismic stress, and background loading:

σ�r; t� � σ�r; t0� �
X
i

�σ�i�
co �r; t�tt0 � �

X
i

�σ�i�
ps �r; t�tt0 �

� _σload�r� × �t � t0�; (1)

where accumulated coseismic and postseismic stress in a
time interval �t1; t2� are, respectively,
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In equations (1)–(3)

t�i��n� � occurrence time of the nth event on fault i.
m�i��n�

jk �r0� � jk moment tensor density component of the
nth event at point r0 on fault i.

Ψjk�r; r0; t� � Green’s function for the accumulated stress
at point r and time t in the viscoelastic system arising from
the unit jk-component moment tensor source applied at
point r0 and time 0. The use of linear viscoelasticity allows
Ψ to be defined independently of the stress state, so that
there is no nonlinear interaction between the loading and
postseismic stress fields. The stress can be a linear combi-
nation of stress tensor components evaluated at r, for
example, the Coulomb stress function.

H�t� � Heaviside step function.
_σload � background loading rate.

Note that any of the above stress quantities is meant to
be one of the components of a stress tensor σ, for example,
σαβ , in which case the notation Ψjkαβ for the Green’s func-
tion would be appropriate. We omit these subscripts until
Earthquake Simulation, where the full tensor notation is
needed.

Loading rate is prescribed as

_σload�r� � �h� _σ�i�
co �r; t� � _σ�i�

ps �r; t�T0 �i; 4

where the dot superscript denotes time differentiation and hi
denotes time average. Hence,
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T→∞
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�σ�i�

co �r; t�T0 � σ�i�
ps �r; t�T0 �
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× fΨjk�r; r0; T � t�i��n��H�T � t�i��n��
�Ψjk�r; r0;�t�i��n��H��t�i��n��gd2r0: (5)

The time interval �0; T� in equation (5) is an arbitrarily cho-
sen time interval, which, through the n-summation, samples
both past events (t�i��n� < 0) and future events (t�i��n� > 0).
This definition is consistent with the loading rate given by
equation (4) of Pollitz and Schwartz (2008) for the case
of uniform recurrence intervals and identical slip per event.
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Figure 1. Stress history of a patch that had a slip event at times t1
and t2. An event is initiated when stress attains the static frictional
stress σs. The fault patch slips the amount necessary to reduce its
stress to the arrest stress level τa in isolation.During an event, if stress
on the same patch attains the dynamic friction value σd, it will slip
again anamountnecessary to reduce its stress toσa. Immediately after
an event, the final stressmay be different fromσa because of the inter-
action of neighboring fault patches. The slippage during events at
times t1 and t2 is not of finite duration (as depicted) but occurs instan-
taneously in the static cascade model. During the interseismic period
the patch stressing ratewill depart from linearity because of crust and
mantle viscoelastic relaxation, and stress steps between slip events
may arise from slip events on neighboring faults.
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The present definition is more general and ensures that, on
average, coseismic stress changes negate the buildup of
stress during interseismic times, so that the long-term stres-
sing rate at a given point tends to zero. We may evaluate
equation (4) by dividing the events into three groups. Let
S�i�1 �T� be the set of events such that 0 < t�i��n� ≤ T; let
S�i�2 �T� be the set of events such that �T < t�i��n� ≤ 0; let
S�i�3 �T� be the set of events such that t�i��n� ≤ �T. The n sums
in equation (5) can be regrouped as follows:
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For large T the second and third terms of equation (6) are
negligible, and the Green’s function in the first term may
be replaced with Ψjk�r; r0;∞�. This results in
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X
i

X
jk
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jk �r0�iΨjk�r; r0;∞�d2r0: (7)

The time derivative of moment tensor density in equation (8)
is only symbolic and means more precisely

h _m�i�
jk �r0�i �

�
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X
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�T�
m�i��n�
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2
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The time-averaged moment release rate in equation (8) is
proportional to the slip rate on fault i. Equation (7) thus states
that the loading rate is that resulting from a prescription of
backslip on all faults at their respective long-term slip rates
and evaluated on the viscoelastic model in the limit of com-
plete relaxation. This result was previously given in equa-
tion (9) of Savage (1983).

In practice, equation (1) is implemented with equa-
tions (2), (3), and (7) for the coseismic stress changes, post-
seismic stresses, and loading rates, respectively. Thus, the
stress may be projected forward from an initial starting time

t0 with knowledge of the faulting history (in order to evaluate
equations 2 and 3) and the mean slip rate on each fault (in
order to evaluate equation 7).

The loading rate in equation (4) has been defined such
that the time-averaged stressing rate at a given point tends to
zero as the time interval becomes arbitrarily large, that is,

lim
t→∞h _σ�r; t�i � 0: (9)

Pollitz and Schwartz (2008) note that in a complete fault net-
work the system should satisfy equation (9) and be self-
driven by its set of faults, that is, without the addition of
_σload�r�. Thus, _σload�r� � 0 for a complete fault network.
In practice, the group of faults available for analysis is in-
complete and _σload�r� ≠ 0. However, as shown in section 4
of Pollitz and Schwartz (2008), an incomplete fault network
can be appended with an auxiliary set of faults such that the
resulting _σload�r� equals zero while the stress evolution pre-
scribed by equation (1) remains unchanged. Hence, the im-
plementation of equation (1) with the loading rate prescribed
by equation (7) is not compromised by the use of an incom-
plete fault network. The previously described prescription is
adequate for time spans that are short enough that the fault
network and/or elastic properties themselves do not evolve
(e.g., Ben–Zion et al., 1999; Lyakhovsky et al., 2001).
We assume that it is adequate for simulations up to several
tens of thousands of years.

Earthquake Simulation

Green’s Functions

In order to improve the efficiency of evaluating equa-
tion (1), it is advantageous to store the Green’s functions
Ψjk�r; r0; t� (t ≥ 0) in computer memory. For the static-
deformation component of Ψjk (i.e., Ψjk�r; r0; 0��), the
Green’s function varies with distance from the source r �
jr � r0j as r�3. The postseismic components vary smoothly
in the horizontal dimension at shallow depth levels, with
dominant wavelength approximately equal to the elastic plate
thickness. At depth, however, the postseismic components
may vary sharply in the horizontal dimension, with a domi-
nant wavelength roughly equal to the distance of the obser-
vation point from the base of the elastic plate. The sharpest
horizontal (and vertical) variations in the postseismic com-
ponent of Ψjk arise from a source r0 close to the base of
the elastic layer. This is indicated by the tendency for
viscoelastic-mode eigenfunctions to become increasingly
concentrated near the base of the elastic layer with increasing
spherical harmonic degree (decreasing wavelength), jointly
with increasing amplitude (Fig. 2). This occurs fundamen-
tally because the coseismic stress field at the top of the as-
thenosphere, just below the base of the elastic plate, is large
and of short wavelength for a deep source. These stresses
must relax with time, and continuity of stress at the elastic
plate/asthenosphere boundary dictates that the base of the
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elastic layer must have large amplitude with relatively short
wavelength. These considerations show that the Green’s
functions should be discretized relatively densely in the
near-source region.

We discretize Ψjk�r; r0; t� as follows. For a given source
r0, define an auxiliary coordinate system with an equator that
passes through the surface projection of r0 and is parallel to
the local east direction at that point. In this coordinate system
assign a longitude of zero to r0, and let ϕ and θ be the longi-
tude and latitude of r.

Assume that each fault patch is of identical length and
width, represented by a center point located in the middle of
the patch, and that the associated source depth is discretized as

dm � dmax � �dmin � dmax�
�
�0:5� m

Nd

�

�i � 1; � � � ; Nd�; (10)

where Nd is the number of depth points that sample the depth
interval from dmin todmax. The set fdmg also spans the range of
receiver depths because we intend to evaluate deformation in
the middle of each fault patch.

We define a fundamental source fault patch Ω�δ�
m striking

due north, with center at depth dm located at zero latitude and
longitude in the auxiliary coordinate system, and with length
L, dip δ, and width W � �dmax � dmax�=��sin δ�Nd�. For the
αβ component of stress in this coordinate system we calcu-
late discrete Green’s functions Ψ�δ�

jkαβ ��ϕp; θp; dp�; dm; tq� for
the unit source fault patch, discrete receiver coordinates
�ϕp; θp; dp�, and discrete times tq as an integral over the
source fault patch:

Ψ�δ�
jkαβ ��ϕp; θp; dp�; dm; tq�

�
Z
Ω�δ�
m

Ψjkαβ ��ϕp; θp; dp�; r0; tq�d2r0: (11)

A set of receiver coordinates suitable for this purpose (and
used in the present study) is shown in Figure 3. These
Green’s functions may be computed and stored ahead of
time. They embody coseismic and postseismic deformation
from prescribed dislocation sources and are calculated using
the methods of Pollitz (1996, 1997). Note that in the along
strike direction the gridpoints in the near field are spaced ex-
actly one fault length L apart. We may extend the defini-
tion of discrete Green’s functions by allowing them to be
continuous variables of θ and ϕ as well as t, that is

18.8 km
6.3 km
1.9 km

Figure 2. Spheroidal viscoelastic-mode eigenfunctions of the
spherically layered viscoelastic model (see Synthetic Stress and
Seismicity Patterns), which has an elastic plate thickness of
16 km. Vertical eigenfunction U and horizontal eigenfunction V
are shown as a function of wavelength � 2πR=�l� 1

2
�, where R

is Earth’s radius and l is the spherical harmonic degree.
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Figure 3. (a) Grid of points used to compute Green’s function
response for a fundamental source patch. Unit of relative latitude
and longitude is degrees. (b) Close-up view of the grid shown in
(a). The gray line indicates the surface projection of a 3 km long
fundamental source patch, represented by a line parallel to the fault
strike and passing through the middle of the source patch.
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Ψ�δ�
jk ��ϕ; θ; dp�; dm; t�, which may be obtained through spatial

and/or temporal interpolation of the functions given in
equation (11).

Calculation of Stress Evolution

Let the physical source fault i have the position
ri � �r̂i; di� and strike ψi. It is convenient to define the
rotated Green’s functions

~Ψ�δ�
jkαβ �

X
α0β0

Rαα0 ��ψi�Rββ0 ��ψi�Ψ�δ�
jkα0β0 ; (12)

where R��ψi� is a rotation matrix that performs a rotation of
the given angle about r̂i in order to obtain tensor components
in the geographic coordinate system. For the stress compo-
nent σαβ at observation point r � �r̂; dp�, equations (1), (2),
(3), (7), and (11) lead to

σαβ ��r̂; dp�; t� � σαβ ��r̂; dp�; t0�
�

X
jk

X
j0k0

X
i

Rjj0 �ψi�Rkk0 �ψi�

×
�
� h _m�i�

j0k0 i ~Ψ�δ�
jkαβ ��ϕ; θ; dp�; di;∞��t � t0�

�
X∞
n�1

m�i��n�
j0k0 f ~Ψ�δ�

jkαβ ��ϕ; θ; dp�; di; t � t�i��n��

×H�t � t�i��n��gjtt0
�
; (13)

where �θ;ϕ� is the running angular distance and azimuth
from source point r̂i to observation point r̂.

Equation (13) is the main result of Earthquake Simula-
tion. It is used to project stress forward from an initial time t0
to time t. In practice, time is advanced in increments Δt so
that equation (13) is implemented with t � t0 �Δt. Then
the initial time is reset to t0 � t and so forth.

For determining stress evolution on the fault network it-
self, it suffices to evaluate it for points r̂ � r̂p; however, equa-
tion (13) ismore general and allows the determination of stress
evolution in the regions between faults as well. It is applicable
to any stress component or any linear combination of stress
components (e.g., the Coulomb failure function).

Computational Efficiency

As time advances new ruptures are generated (see De-
termination of Earthquake Ruptures), and the faulting history
is updated with more events. This means that the n summa-
tion in equation (13), which sums over all past events on a
given fault, grows with time. Over many earthquake cycles
the stress evolution evaluated with equation (13) requires the
convolution of a large number of sources with the appropri-
ate Green’s functions accounting for the accumulated coseis-
mic and postseismic deformation. This reflects the fact that
viscoelastic relaxation retains memory of all past source

loads and continually evolves in response to the past loads.
However, the computational burden becomes considerable as
past ruptures accumulate with increasing time, so that com-
putational demand in a straightforward application of equa-
tion (13) would grow quadratically with elapsed time.

Computational efficiency is gained in three ways:

1. Time-dependent regrouping of past dislocations. If a giv-
en patch has ruptured at past times t1 and t2 > t1, and the
elapsed time since t2 is much greater than t2 � t1 (i.e.,
t � t2 ≫ t2 � t1), then the viscoelastic relaxation accu-
mulated in the next timestep is nearly insensitive to the
time of the slip. That is, the slippage s1 at time t1 and
slippage s2 at time t2 may be combined into a net slip
s1 � s2 at a single time (e.g., either t1 or t2). This slip
regrouping is assigned to time t2 if s2 > s1 and time t1
if s1 ≥ s2, and it is implemented if t � t2 > 7 × �t2 � t1�.
At sufficiently large elapsed times, slip regrouping may
involve the same patch multiple times. This procedure
ultimately keeps the number of past slip events needed
in the n summation bounded.

2. Selective time-sampling of equation (13) and temporal
interpolation. It is generally necessary to evaluate equa-
tion (13) with the full n summation at least intermittently
because of the nonlinearity of the viscoelastic relaxation
terms. However, much of the signal from past events
varies smoothly with time, and for such events a smooth
functional dependence with time may be implemented.
However, for very recent events (i.e., small t � t�i��n�

compared with a typical relaxation time) all terms in the
n summation must be implemented. This suggests a strat-
egy in which the i and n summations in equation (13) are
separated into two groups, one for past events occurring
at least a time T in the past and interpolated using a
smooth (e.g., quadratic) time dependence, and the other
for more recent events, for example,

σαβ ��r̂; dp�; t� � σαβ ��r̂; dp�; t0�

� � � �
X
i

� X
njt�t�i��n�<T

� � � f ~Ψ�δ�
jkαβ ��ϕ; θ; dp�; di; t

� t�i��n�� ×H�t � t�i��n��gjtt0
�

X
njt�t�i��n�≥T

fA��ϕ; θ; dp�; di; t0 � t�i��n�� × �t � t0�

� B��ϕ; θ; dp�; di; t0 � t�i��n�� × �t � t0�2g
�
: (14)

The A and B coefficients in equation (14) may be eval-
uated at a reference time t0 using equation (13) with the
full summation. Then equation (14) may be used to eval-
uate stress for t > t0 up to a certain time where the quad-
ratic approximation slightly loses accuracy. Tests show
that equation (14) is typically very accurate for a choice
T ∼ 45 yr and, starting from an initial t0, for times
t0 < t < t0 � 15 yr. Then t0 may be increased by 15 yr,
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new A and B coefficients determined, and so forth. This
scheme requires the evaluation of the full n summation in
equation (13) only once every 15 yr, during which typi-
cally 25 to 50 slip events may occur. The numerical effort
involved with evaluating equation (14) is generally an
order of magnitude less than that involved with evaluat-
ing equation (13), implying a corresponding reduction in
computation time.

3. Dynamic timestepping. With knowledge of the stressing
rate stored at the current timestep, the time of the next slip
event on at least one fault patch in the system may be
predicted. The subsequent timestep may be taken just
large enough to initiate a new slip event with one evalua-
tion of equation (13) or equation (14).

Determination of Earthquake Ruptures

Ruptures on a set of fault patches initiate, propagate, and
terminate according to the evolution of the Coulomb failure
function (CFF, King et al., 1994)

CFF � τ � μeffσn; (15)

where τ and σn are shear and normal stress, respectively, re-
solved onto a fault plane with normal n̂ and fixed slip vector
ŝ, that is, τ � ŝ × σ × n̂ and σn � n̂ × σ × n̂, where σ is the
stress tensor; μeff is the effective coefficient of friction. Re-
ferring to Figure 1 we prescribe a cascade mechanism to de-
termine an earthquake rupture. Following Ben–Zion et al.
(2003), the steps in determining a rupture are as follows:

1. Rupture initiation. Rupture initiates on a fault patch when
CFF exceeds a static frictional stress value σs. This value
may vary from fault to fault.

2. Rupture propagation. At a given timestep, each patch in
the fault network is queried. When the stress on one or
more fault patch exceeds the static frictional stress thresh-
old, each patch slips the amount necessary to reduce its
CFF to the arrest stress level σa. During an event, a patch
may rerupture if its stress exceeds a dynamic frictional
stress value σd. Each fault patch slips in isolation, that
is, the specified slip amount that is necessary to reduce
stress on the given fault patch to σa in the absence of
other slip events. It is often the case that adjacent fault
patches slip simultaneously, in which case each patch im-
mediately reloads the neighboring patches and the resul-
tant stress on any patch is consequently greater than σa.
During the event (and within the same timestep) the en-
tire fault network is queried once again, and any patches
with CFF exceeding its threshold frictional stress will un-
dergo slip events. This may include rupture of new
patches or rerupture of patches that already slipped
during the current event. Note that an event may include
rupture of one or more fault segments (each of which has
joined fault patches with smooth transitions, i.e., no large
kinks), though the vast majority of events are restricted to
one such segment.

3. Rupture termination. Rupture terminates as soon as the
fault network is queried and CFF is less than σs (or σd

for patches that have already ruptured) everywhere.

Following Ben–Zion (1996) we assume that the
brittle strength follows Byerlee’s Law and varies with depth
z as

σs � fs�ρ � ρw�gz; (16)

where fs is the static coefficient of friction, ρ and ρw are the
rock density and water density, respectively, and g is the
gravitational acceleration. In equation (16) we shall use
values fs � 0:75 and ρ � ρw � 18 Mpa=km to prescribe
the vertical gradient. We assume that σa � σs �Δσ, where
Δσ is a constant stress reduction value. Unless specified
otherwise, the calculations use Δσ � 5 MPa. It is useful
to define a dynamic overshoot coefficient D � �σs � σa�=
�σs � σd�, which reflects the tendency for the arrest level
σs to be lower than σd. Then σd � σs �D�1�σs � σa�.
The system behavior would be unaltered if we were to sub-
tract a reference stress value of σs � S from the actual stress
distribution and adjust the frictional stresses as

σs → S σd → S �D�1�σs � σa� σa → S �Δσ:

(17)

Using S as the reference failure stress threshold simply re-
defines the stress field relative to the Byerlee frictional
strength, and it allows us to visualize stress differences with-
out the depth dependence.

The average stress drop during an event is always less
than σs � σa � Δσ. A patch will have an instantaneous
stress drop of this amount when it is stressed above σs,
but (except on the patch where the event nucleates) that oc-
curs during an event after the stress on the patch has been
increased by stress transfer from neighboring patches. As
a corollary the stress drop is generally not constant on the
fault, even when D � 1, because the stress state just before
an event is generally heterogeneous. The only definite state-
ment that can be made in this regard is that the stress drop on
patches that slip in an event must be between σ � σa and
σ � σd, where σ is the preevent stress; the stress drop equals
σ � σd when D � 1.

In the fault networks employed in this article, stresses
are evaluated in the center of patches of dimension 3 km
�in length� × 2 km �in depth�. The amount of slip needed
to reduce the stress of a patch by 5 Mpa is 40 cm, implying
that the minimum earthquake magnitude is 5.2.

Stress and Seismicity Functions

We employ several measures to characterize stress evo-
lution on system faults. These stress functions are among
those given in section 2.2 of Ben–Zion et al. (2003).
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1. Average stress,

AS�t� � 1

N

XN
i�1

τ i�t�; (18)

where τ i is a stress value at time t (e.g., CFF) and patch i
on a fault with N patches. AS is expected to be relatively
high/low just before/after a large event.

2. Standard deviation of stress,

SD�t� �
��������������������������������������������
1

N

XN
i�1

�τ i�t� � AS�t��2
vuut : (19)

This measures the size of stress fluctuations on the fault,
with large values of SD indicating a more heterogeneous
distribution of stress on the fault.

3. Configurational entropy,

CE�t� � �
Z

p�s�t�� lnfp�s�t��gds; (20)

where p�s�t�� is the density distribution of stress on a
given fault at time t (note that

R
p�s�t��ds � 1). This

measure characterizes the evolving number of stress
states on the fault, a larger value of CE indicating a great-
er number of stress states and higher degree of disorder.

We employ the following functions of seismicity:

1. We compile histograms of the interevent times for events
about a threshold magnitude on a given fault. This uses
the entire history of simulated seismicity.

2. We track the cumulative number of slip episodes up to
time t on fault patches (belonging to a given fault) within
a definite depth range. A related function is the cumula-
tive amount of slip within a definite depth range averaged
over the length of the given fault.

3. A foreshock–mainshock (FM) triggering measure
FM�M;T�, the probability that a moderate magnitude
event will be followed with a time T by an event of mag-
nitude >M. Moderate events of magnitude between 5.9
and 6.2 are used for this purpose. This uses the entire
history of simulated seismicity.

4. The frequency (f) versus magnitude statistic is calculated
using the entire history of simulated seismicity.

Application to Synthetic Fault Network

Fault Geometry and Viscoelastic Structure

We define a synthetic fault network consisting of two
parallel, vertical, strike-slip faults, each extending from
the surface to the base of the elastic plate at 16 km depth
(Figs. 4 and 5). Each fault is 300 km long, and they are se-
parated by 32 km. Each fault is discretized into 3 × 2 km
(length times depth, respectively) patches, resulting in 800
patches per fault.

Each fault is assigned a simple slip history, which drives
the initial viscoelastic relaxation of the system. Fault 1 had a
3 m uniform slip in the year 1900, and fault 2 had a 1.5 m
uniform slip in the year 1900. The viscoelastic structure con-
sists of a 16 km thick elastic upper crust underlain by a Max-
well viscoelastic lower crust and mantle. Uniform elastic
parameters are assigned to the upper and lower crust: shear
modulus μ � 30 GPa and bulk modulus κ � 50 GPa. The
mantle is assigned elastic parameters μ � 70 GPa and
κ � 117 GPa. Following Pollitz and Nyst (2004), the visc-
osity values are ηc � 4:0 × 1019 Pa s and ηm � 1:2 ×
1019 Pa s.

Figure 4. Viscoelastic stratification used in this study, consist-
ing of an elastic upper crust underlain by Maxwell viscoelastic low-
er crust of viscosity ηc and mantle of viscosity ηm.

Figure 5. Synthetic fault network, consisting of two 300 km
long, 16 km wide vertical right-lateral strike-slip faults separated
by 32 km. Each fault is discretized into 800 patches with
dimensions of 3 × 2 km. The assigned initial stress field is super-
imposed.
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Implications of Viscoelasticity

With reference to the pre-1900 stress field, Figure 6
shows the contribution of fault 1 to the subsequent stress evo-
lution. The figure shows right-lateral shear stress at the time
of the coseismic offset and for three postseismic epochs; the
stresses correspond to the terms �σ�i�

co �r; t�jtt0 � and �σ
�i�
ps �r; t�jtt0 �

of equation (1). The largest coseismic stress drops are on the
lower edge and lateral ends of the faults, as expected. Post-
seismic stress changes are positive everywhere, correspond-
ing to reloading of the fault zone, and they are largest at the
base of the fault. Thus, the postseismic stress changes exhibit
the same pattern as the coseismic stress change and with op-
posite sign. With sufficient elapsed time, it is found that the
accumulated postseismic stress changes nearly negate the co-
seismic stress change. For an infinitely long strike-slip fault
in a one-fault system, the summed coseismic and postseismic
stress changes in the limit of complete relaxation would be
theoretically zero (Savage and Prescott, 1978; Pollitz, 2001),
because the resultant motion would simply be block motion
of one side of the fault with respect to the other. From equa-
tion (7) this implies that _σload is zero for an infinitely long
strike-slip fault and nearly zero for a finite length fault.

This reasoning carries an unexpected implication. _σload

is zero if the defined fault network is kinematically self-
consistent (Pollitz and Schwartz, 2008), that is, it contains
a prescription of faults and slip rates such that the long-term
motion of the volumes between the faults is rigid (as would
be the case for an infinitely long strike-slip fault or several
such faults parallel to one another). Because a priori slip rates
appear explicitly in the model only through _σload via the
time-averaged moment release rate on a fault, a system with
_σload � 0 implies an inherent ambiguity of subsequent stress
evolution because all information concerning these slip rates
is absent. Put another way, in a kinematically self-consistent
model the stress evolution is driven only by viscoelastic re-
laxation from past earthquakes as in the model of Savage and
Prescott (1978). If the past earthquake history on a given
fault contains mostly events of the expected size and fre-
quency but also a few anomalously large events in the recent
past, then one can imagine that the system will load itself
more rapidly and continue to produce such events at a high
rate, so that the fault may not have the same average slip rate
in the future as it had in the past. Conversely, a fault may
spiral to a state of very little average slip rate if because
of the circumstances of the stress evolution, it has a few re-
cent smaller than expected events and hence starts to reload
less rapidly. This situation in the viscoelastic realm implies
that average slip rates on the faults will depend chiefly on the
parameters of the cascade model (Determination of Earth-
quake Ruptures) and partly on the earthquake history prior
to initiation of the model.

In the conventional backslip model (Savage, 1983) the
net loading rate on a fault (even an infinitely long fault) does
depend explicitly on a priori slip rates. Because the conven-
tional backslip model is an end-member case of viscoelasti-

Figure 6. Evolution of right-lateral shear-stress resulting from
3.0 m of slip on fault 1 in the viscoelastic model. Coseismic stress
change is plotted on a linear scale, postseismic stress changes are
plotted on a logarithmic scale.
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city in the limit of large asthenosphere viscosity (Savage and
Prescott, 1978; Savage, 2000; Pollitz, 2001), the absence of
explicit dependence on a priori slip rate for the finite vis-
cosity case seems paradoxical. The explanation lies in the
fact that the fault is loaded by a sum of viscoelastic relaxation
from an infinite number of past earthquakes, for example, theP

i�σ�i�
ps �r; t�jtt0 � term of equation (1). In the high viscosity

limit the recent earthquake history is immaterial because
the viscoelastic relaxation from a finite number of past events
tends to zero with large viscosity. Because the past earth-
quake history is assumed to consist of slip events that, on
average, obey the a priori slip rate, the resultant viscoelastic
relaxation from past earthquakes is proportional to the a
priori slip rate. In the finite viscosity case, the dependence
on a priori slip rate is compromised by the dependence on
recent earthquake history.

The synthetic fault network considered here does, in
fact, retain an explicit dependence on slip rate because the
process of backslip on the completely relaxed model, used
to calculate _σload, is equivalent to specifying additional infi-
nitely long faults off the ends of the model faults, slipping
steadily at long-term slip rates prescribed for the respective
faults. (In a spherical geometry, the additional faults would
be small circles connecting the endpoints of a given fault.)
Thus, a priori slip rates communicate with the rest of the
model through the interaction of the additional creeping
faults with the endpoints of the model faults.

Synthetic Stress and Seismicity Patterns

The long-term slip rates assigned to faults 1 and 2 are
15 mm=yr and 7:5 mm=yr, respectively. In order to approxi-
mate a transition to slip-strengthening behavior in the mid-
crust, the fault patches at the bottom of the elastic layer (i.e.,
14–16 km depth) release 75% of this slip seismically and
25% aseismically; this is implemented implicitly with equa-
tion (7) by assigning a value of mean moment release rate
h _m�i�

jk �r0�i in the 14–16 km depth range that is 75% of its
value elsewhere. An initial right-lateral shear-stress distribu-
tion in the year 2000 is defined on the faults (Fig. 5) such that
the corresponding CFF on fault 1 increases linearly with
along strike distance from zero at its northern end to a maxi-
mum of 12 bars at its southern end, and CFF on fault 2 in-
creases linearly with distance from zero at its southern end to
a maximum of 6 bars at its northern end. We use frictional
stress values given in Determination of Earthquake Ruptures
with a dynamic overshoot coefficient D � 1:5. Simulations
are run up to a maximum of 50,000 events or 50,000 yr
elapsed time, whichever occurs first.

Beginning in the year 2000, relaxation from pre-2000
events (i.e., the events specified to have occurred in 1900)
modifies the initial stress level according to equation (13),
which is carried forward in time in increments Δt �
0:1 yr. Initial earthquake rates are elevated because of the
initial conditions, which lead to a first large event rupturing
fault 1 in 2004 with Mw 7:8 and a first large event rupturing

fault 2 in 2023 with Mw 7:7. Up to 3 m slip is involved in
these first events, which produce an early phase of relatively
fast viscoelastic relaxation and hence elevated loading rates.
The earthquake sizes and reloading rates stabilize after
∼400 yr. Figure 7 shows the slip distributions of 12 conse-
cutive Mw >6:7 events occurring after 2400. Typical maxi-
mum slip is about 1.8 m, occurring at intervals of ∼120 yr on
fault 1 and ∼240 yr on fault 2; this is consistent with their
respective a priori maximum slip rates.

Figure 7. Slip distributions of 12 consecutive Mw >6:7 events
occurring in the two-plane model more than 400 yr after initiation of
the system. The year and magnitude are noted next to each slip dis-
tribution.
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The depth-dependence of slip is revealed in Figure 8,
which shows average time-dependent slip within several
depth intervals on the two model faults. The shallower the
depth level, the more episodic the slip. Within the upper
2 km, most slip occurs in M >7 events, whereas at depth
≳12 km, slip occurs more frequently in relatively small mag-
nitude events (Fig. 9). This reflects the overall greater net
loading rate as the base of the elastic layer is approached,
which arises from the greater magnitude of postearthquake
stressing rate contributed by viscoelastic relaxation at greater
depth levels. The slip history indicated by the 1000 yr time
frame in Figure 8 is consistent with a seismic slip release rate
of 15 mm=yr and 7:5 mm=yr on faults 1 and 2, respectively,
within 0–12 km; the seismic slip release rates are 25%
smaller within the 14–16 km depth interval because 25%
of the long-term slip is accommodated by aseismic slip.

On both faults, configurational entropy, average stress,
and standard deviation in stress tend to increase with time,
leading up to a major (M ∼ 7:5) rupture (Fig. 10), and all
drop suddenly at the time of the earthquake. This behavior
is similar to that obtained by Ben–Zion et al. (2003) in their
model F, who interpret this pattern as an increase in disorder
during the buildup period to a system-sized event. During
that time numerous small events occur, increasing the num-
ber of stress states and the overall level of heterogeneity on
the fault. The magnitude-frequency statistics (Fig. 11) illus-
trate a linear trend up to a magnitude of ∼7:0, beyond which
the number of events reaches a local maximum at higher fre-
quency than the linear trend. This behavior is commonly

seen in synthetic seismicity simulations involving long
smooth faults with uniform frictional properties (e.g., Ben–
Zion and Rice, 1997; Shaw and Rice, 2000). It is consistent
with combined Gutenberg–Richter and characteristic earth-
quake behavior (Wesnousky, 1994).

Interevent times for M >7:3 events on the model faults
are centered on roughly 115 yr for fault 1 and 230 yr for fault
2 (Fig. 12a). Both the interevent times and COV are more
variable on fault 1 as D and ηm are varied. The only intrinsic
difference between the two faults is the fact that fault 1 has a
greater slip rate and ruptures more often than fault 2. It re-
ceives quasiperiodic stress perturbations from fault 2 roughly
once every two fault 1 cycles. On the other hand, fault 2 re-
ceives quasiperiodic stress perturbations from fault 1 roughly
twice every fault 2 cycle. To consider an end-member case,
assume that large earthquake occurrence is almost perfectly
regular on both faults. On fault 1 there is generally equal like-
lihood of zero or one perturbations from a large fault 2 event
during a fault 1 cycle, and on fault 2 it is almost certain that
there will be exactly two perturbations from a large fault 1
event during a fault 2 cycle. This qualitative argument sug-
gests that fault 1 is more sensitive to external perturbations
than fault 2 because of its larger slip rate, other factors (e.g.,
fault length) being equal.

The probability of a foreshock–mainshock sequence on
each fault is summarized in Figure 13a. For example, with
T � 14 yr (maximum delay) between a moderate earthquake
and a mainshock, the probability of such a sequence is
greater than 10% for mainshock magnitudes of 7.3 or less on
fault 1. On fault 2, the probability of such a sequence is about

Figure 8. Cumulative average time-dependent slip within indi-
cated depth intervals along faults 1 and 2. Cumulative slip values are
zero at the initial time 2000. Superimposed are the times and mag-
nitudes of M >6:7 earthquakes on the respective faults.

Figure 9. Cumulative number of slip episodes within indicated
depth intervals along faults 1 and 2. Superimposed are the times and
magnitudes of M >6:7 earthquakes on the respective faults.
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one-half that of fault 1 for all considered mainshock para-
meter values. This difference reflects the generally longer in-
terevent time between large ruptures on fault 2. The
Poissonian probability of a mainshock occurring within this
time period by chance is

p � 1 � exp�ft�; (21)

where t � 14 yr. For a mainshock magnitude threshold of
M 7:3, the obtained p is generally 20% to 30% greater than
the Poissonian value for both faults. For example, taking the
case D � 1:5 and ηm � 1:2 × 1019 Pa s, at this magnitude
threshold fault 1 has an 11% probability of experiencing a
mainshock within 14 yr of a moderate earthquake. The prob-
ability of an M >7:3 mainshock occurring within this time
period by chance is given by equation (21) with f � 6:03 ×
10�3 yr�1 based on Figure 11, yielding 8.1%. The same cal-
culations for fault 2 yield a 7.5% probability of experiencing
an M >7:3 mainshock within 14 yr of a moderate earth-
quake, compared with a 5.1% Poissonian probability.

These results and the correlation with the stress mea-
sures suggest that moderate earthquakes are diagnostic of
special conditions that exist on the fault prior to a mainshock.
To determine the significance of this in the context of main-

shock triggering, it would be necessary in future work to in-
vestigate whether the moderate events themselves tend to
trigger the subsequent mainshock. This would provide a
test of the idea that foreshock–mainshock and mainshock–
aftershock triggering mechanisms are essentially the same
(Feltzer et al., 2004), both being consistent with a static
cascade model.

Similar modifications in rupture probability apply when
the adjacent fault has just ruptured in a large event, delaying
the occurrence of the next large event. This is illustrated in
Figure 14, which shows the probability of an M >7:3 event
on fault 1 or fault 2 within a certain time interval following
anM >7:3 event on the other fault. Rupture probabilities are
substantially reduced relative to the Poisson probabilities for
several decades following a large event on the adjacent fault.
The stress shadow effect is only temporary because large
events on the adjacent fault are built into the Poissonian
probabilities and the average rupture probabilities over very
long time spans (hundreds of years) are the same for the
Poissonian (dashed curves) and time-dependent (continuous
curves) cases. Thus, an initial relative reduction in rupture
probability must be matched by a relative increase in rupture
probability after sufficient elapsed time.

Figure 10. Configurational entropy, average stress, and standard deviation in stress as a function of time. For each fault, the lower plot
shows the time and magnitude of all model earthquakes within this time period. Moderate earthquake production rate is calculated using the
magnitude range 5:9 < M <6:2.
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(a) (b) (c)

Figure 11. Frequency of earthquake occurrence on each fault of the two-fault model as a function of D and ηm. Event frequency is
compiled in bins of 0.1 magnitude unit. Superimposed for each distribution is the best-fitting curve given by equation (22). Best-fitting
parameters fb; �M; σMg are indicated.
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Figure 12. Histograms of interevent times ofM >7:3 events on the model faults as a function ofD and ηm. The histograms are binned in
20 yr time intervals. Mean recurrence interval (vertical black line segments) and coefficient of variation values are indicated.
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Application to San Francisco Bay Region

We exploit an available fault-rupture chronology and
fault network assembled by Pollitz and Schwartz (2008)
for the purpose of evaluating future stress evolution in the
San Francisco Bay region (SFBR). We utilize these same
elements to construct a synthetic fault network and an initial
stress field, with the capability of projecting the stress field
forward in time on a viscoelastic Earth model.

Fault Geometry

A discretized fault network consisting of SFBR faults is
shown in Figure 15. It is discretized into 2319 patches of
faults of uniform length (3 km) and uniform distance (2 km)
between the upper and lower edge depths. Most faults extend
from the surface to a depth of 16 km, which is also the pre-
scribed elastic plate thickness in the viscoelastic model
(Fig. 4); some faults, such as those associated with the
1989 Loma Prieta earthquake, do not rupture up to the sur-
face. Most faults are vertical and accommodate strike slip;
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Figure 13. The foreshock–mainshock function FM�M;T�: the probability of a (potential) foreshock of magnitude between 5.9 and 6.2
triggering a mainshock of magnitude ≥Mwithin a time period T. The function is evaluated on each fault separately as a function ofD and ηm.

Figure 14. Continuous curves show the probability of an M >
7:3 event on fault 1 or fault 2 within a time T following anM >7:3
event on the other fault. Dashed curves show the corresponding
Poissonian probability of an M >7:3 event within a time span
of T yr. Parameter values are D � 1:5 and ηm � 1:2 × 1019 Pa s.

Figure 15. Synthetic fault network in the SFBR. The assigned
initial stress field is superimposed. Thick gray lines delineate
several major area faults.
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only the fault associated with the 1989 Loma Prieta earth-
quake is dipping and accommodates dip slip.

The fault network encompasses most major faults of the
SFBR. This includes the San Andreas fault, which ruptured
most recently in 1906, and the Hayward fault, which rup-
tured most recently in 1868. Except for the source region of
the 1989 Loma Prieta earthquake, all other faults last had
major ruptures at least two centuries ago. Parameters asso-
ciated with fault geometry and fault history are given in ta-

bles 1–3 of Pollitz and Schwartz (2008). The past earthquake
history and the long-term slip rates prescribed in that study
suffice to project stress forward in time using equation (1)
provided that an initial stress field, representative of the pre-
sent-day stress field, is prescribed.

Initial Stress Field

A guide to the present-day stress field is provided by the
SFBR stress evolution model of Pollitz and Schwartz (2008).

Figure 16. Slip distributions of 12 consecutiveMw >6:5 events occurring in the SFBR model just after initiation of the system. The year
and magnitude are noted next to each slip distribution. Parameter values are D � 1:5 and ηm � 1:2 × 1019 Pa s.
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Assuming a null stress field at an arbitrary starting time of
1656 (250 yr before the 1906 earthquake), they used equa-
tion (1) combined with the assumptions of uniform recur-
rence intervals and uniform slip per event to evaluate
regional stress for the past 350 yr. We adopt their resulting
stress field, evaluated at 8 km depth in the year 2000 and with
the following caveats, as the initial stress field in the present
study. The computations of postseismic relaxation fields in
Pollitz and Schwartz (2008) were based on a set of viscoe-
lastic normal modes truncated at relatively long wavelength.

The employed mode set was adequate for the evaluation of
postseismic deformation at 8 km depth but not at depths near
the base of the elastic plate. We simplify our task by extra-
polating the stress field determined at 8 km to patches at all
depths, that is, each 3 km long set of patches (16 wide for a
vertical fault) is assigned the same initial stress value. The
resulting initial stress field is shown in Figure 15. Because
the deeper parts of faults undergo relatively large stress fluc-
tuations during a seismic cycle, it is unlikely that the deeper
parts share the same stress field as the shallower parts. The

Figure 17. CFF on the fault network following each of six consecutive Mw >6:5 events occurring in the SFBR model (Fig. 17).
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Figure 18. Configurational entropy, average stress, and standard deviation in stress as a function of time for four of the SFBR faults using
D � 1:5 and ηm � 1:2 × 1019 Pa s. For each fault, the lower plot shows the time and magnitude of all model earthquakes within this time
period. Moderate earthquake production rate is calculated using the magnitude range 5:9 < M <6:2.
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number of faulting cycles implemented on SFBR faults was
relatively few (generally only one to three past ruptures per
fault segment). This means, in effect, that the balance be-
tween stress accumulation and stress release expected in
the long term (e.g., equation 9) has not been fully achieved
during only a 350 yr period of faulting. All of the factors just
discussed contribute considerable uncertainty to the initial
stress field.

Future Fault Evolution

The SFBR faults are embedded in the viscoelastic struc-
ture described in Stress and Seismicity Functions and
Figure 4. Using D � 1:5, Figure 16 shows the slip distribu-
tions resulting from the first 12M> 6:5 events, and Figure 17
shows the corresponding stress levels just after termination
of these events. Figure 18 shows time series of stress func-
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Figure 19. The foreshock–mainshock function FM�M;T�: the probability of a (potential) foreshock of magnitude between 5.9 and 6.2
triggering a mainshock of magnitude ≥M within a time period T. The function is evaluated on each of four SFBR faults separately as a
function of D and ηm. White circles indicate M 6.5 threshold at T � 14 yr for two of the faults.
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tions CE, AS, and SD on four of the faults for the first
1000 yr. Several systematic patterns are evident: (1) shorter
faults tend to saturate at smaller magnitudes (the largest
earthquakes are smaller than those on relatively long faults);
(2) on any given fault, the first ∼100 yr of the model (i.e.,
from 2000 to 2100) tends to produce the largest events. The
first large event on a given fault also tends to raise CE rather
than lower it. Each of these features results from the artifi-

cially smooth initial stress distribution (Fig. 15), which pre-
scribes stress at a given fault location independently of
distance along dip; and (3) times of elevated production rate
of moderate earthquakes tend to coincide with relatively high
values of CE, AS, and SD.

The third property suggests that the production rate of
moderate earthquakes may be a useful indicator of elevated
stress levels and hence a fault that is relatively late in its cycle

(a) (b) (c)

Figure 20. Histograms of interevent times ofM >6:5 events on four SFBR faults as a function of D and ηm. The histograms are binned
in 20 yr time intervals. Mean recurrence interval (vertical black line segments) and coefficient of variation values are indicated.
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Figure 21. Frequency of earthquake occurrence on four SFBR faults as a function of D and ηm. Event frequency is compiled in bins of
0.1 magnitude unit. Superimposed for each distribution is the best-fitting curve given by equation (22). Best-fitting parameters fb; �M; σMg are
indicated.
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toward producing its next large earthquake. This is suggested
by detailed consideration of the seismicity function FM
(Fig. 19a). For example, taking the case D � 1:5 and
ηm � 1:2 × 1019 Pa s, for a mainshock magnitude threshold
of 6.5 the Rodgers Creek fault has a 13% probability of
experiencing a mainshock within 14 yr of a moderate
earthquake. The probability of anM> 6:5 mainshock occur-

ring within this time period by chance is given by equa-
tion (21) with t � 14 yr and f � 7:38 × 10�3 yr�1 based
on Figure 20 or Figure 21, yielding 10%. The same cal-
culations for the southern Hayward fault yield a 12%
probability of experiencing a mainshock within 14 yr of a
moderate earthquake, compared with a 10% Poissonian
probability.
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Figure 22. Mean recurrence interval T, coefficient of variation COV, and characteristic earthquake magnitude �M as a function of dy-
namic overshoot coefficientD on SFBR faults. Minimum magnitude is indicated for T and COV. Fixed ηm � 1:2 × 1019 Pa s is used in these
simulations.
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Discussion

Magnitude-frequency statistics for the faults considered
in both the 2-fault case (Fig. 11) and SFBR case (Fig. 21) gen-
erally exhibit two domains. At magnitudes ranging from 5 to
about 6.8–7.5 (depending on fault length), the statistics obey a
Gutenberg–Richter relationship with a b-value near 1.4. At
larger magnitude the statistics are roughly Gaussian about a
mean magnitude �M characteristic of the largest events that
can occur on that fault. Wesnousky (1994) deduced such be-
havior for individual faults based on joint seismic and paleo-
seismic data. This behavior is qualitatively similar to the
magnitude probability density function (PDF) employed by
the Working Group on California Earthquake Probabilities
(2003) in their figure 4.1.Wequantify this PDFwith a nonchar-
acteristic PDF with slope �b and a characteristic PDF:
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where β � b ln 10 and c is a constant associated with the dis-
tribution of events of characteristic magnitude �M with Gaus-
sian half-width σM. In equation (22) we follow Youngs and

Coppersmith (1985) in describing the noncharacteristic PDF
as a truncated Gutenberg–Richter distribution with minimum
magnitude M0, maximum magnitude Mu, and rate of earth-
quake production at magnitude above M0 equal to _N�M0�.
We choose Mu � �M � 2σM and M0 � 5:0. An observed
magnitude-frequency distribution may be optimally fit for
all constants by performing a grid search over �M and σM

and, for each set of trial values, solving for _N�m0�; b; c in a
least-squares inversion. The values of optimal fb; �M; σMg
are summarized for each magnitude-frequency distribution
in Figures 11 and 21.

The statistics of long-term seismicity depend on the tun-
ing parameters of the model (Ben–Zion, 2001; Ben–Zion
et al., 2003). In the present study this includes the stress
reduction Δσ, the dynamic overshoot parameter D, and
the viscoelastic structure as parameterized by ηm. For the
synthetic two-fault case, Figures 11, 12, and 13 explore
the dependence of magnitude-frequency distribution, intere-
vent time statistics, and foreshock–mainshock function, re-
spectively, on D and ηm. At fixed ηm the impact of
increasing D from 1.5 to 2 is to slightly decrease the fre-
quency of large (M ≳7:3) events and simultaneously in-
crease the number of moderate events around M ∼ 6:0–6:4
(Fig. 11a,b); these changes are seen for both faults 1 and
2. However, COV changes in opposite senses, with COV
on fault 1 increasing and COV decreasing on fault 2 as D
increases. FM for both faults slightly decreases with increas-

Figure 23. a-values on SFBR faults obtained in simulations as a function of D and Δσ.
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ing D because fewer large events occur at larger D
(Fig. 13a,b).

A more consistent pattern is witnessed for FM, the in-
terevent time statistics, and magnitude-frequency statistics
for the SFBR system (Figs. 19–21). Increasing D tends to
increase the interevent time and COV as well as
diminish the characteristic magnitude �M (Fig. 22). Overall,
the ratio of large events to small events diminishes as D
increases. Similar behavior is witnessed in the Virtual

California simulations of Rundle et al. (2004, their figures
5 and 6) in which this ratio is found to increase as the level
of dynamic weakening increases.

Figure 23 shows the a-values of the magnitude-
frequency curves, that is, the intercept of the noncharacter-
istic PDF at M0 given by

a � log10

�
_N�M0�

1 � exp��β�Mu �M0��

�
: (23)

M>6.5 M>6.5 M>6.5

M>7.3 M>6.5

M>6.5
M>6.5 M>6.5

M>6.5

M>6.7
M>6.7

M>6.7

M>7.5

M>6.7

M>6.7
M>6.7

M>6.7

M>7.3

M>7.5

M>6.7

Figure 24. Mean recurrence interval T, coefficient of variation COV, and characteristic earthquake magnitude �M as a function of mantle
viscosity ηm on SFBR faults. Minimum magnitude is indicated for T and COV. Fixed D � 1:5 is used in these simulations.
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A decrease in D is always accompanied by a decrease in a-
value. Taken together with the increase in �M with decreasing
D (Fig. 22), this indicates that the slip budget at smaller D is
accommodated by relatively fewer small and moderate mag-
nitude events and a relatively greater number of large mag-
nitude events.

In practically all cases considered (both two-fault
and SFBR simulations), decreasing ηm at fixed D tends to
decrease COV, resulting in a more regular occurrence of
large earthquakes on a given fault (Figs. 12 and 20).
Figure 24 summarizes this behavior for the SFBR. This is
tentatively rationalized by comparing the timescales of vis-
coelastic relaxation and large earthquake recurrence. Recur-
rence intervals in the various examples are typically 100 yr or
greater. The mantle Maxwell relaxation times at ηm � 1:2 ×
1019 Pa s and ηm � 6 × 1018 Pa s are 24 yr and 12 yr, respec-
tively; the lower crust Maxwell relaxation times are 75% lar-
ger. These are the short-wavelength limits, and the relaxation
times at wavelengths greater than the crustal thickness (e.g.,
a typical interfault spacing) are greater. The timescale of fault
interaction produced by viscoelastic relaxation is thus of the
same order as the interevent times for ηm � 1:2 × 1019 Pa s.
Decreasing the viscosity by a factor of 2 apparently allows
the dynamics of interseismic stressing to more efficiently de-
couple into a viscoelastic relaxation process and a steady/
background stress buildup; for example, interfault commu-
nication occurs at timescales much less than a typical intere-
vent time. Ben–Zion et al. (1993) suggest that the ratio
between Maxwell relaxation time and elastic plate thickness,
with units of inverse velocity, also controls the system be-
havior because this is comparable with the loading rate on
the fault.

It is thought that the San Andreas fault SAF from Cape
Mendocino to San Juan Bautista generates earthquakes of

magnitude ∼7:8 quasiperiodically roughly every 300–
400 yr (Working Group on California Earthquake Probabil-
ities, 2003). The 1906 San Francisco earthquake had mag-
nitude 7.8, average slip of about 5 m, and maximum slip
of about 8 m (Thatcher et al., 1997. The average slip needed
to explain the geodetically measured coseismic deformation
trades off with fault width and would be somewhat less using
the 16 km fault width of the present study.) This behavior is
mimicked in static cascade models of synthetic seismicity
(Ward, 2000; Rundle et al., 2006b). The earthquake model
described here generates very long ruptures of magnitude
≳7:6 on the SAF much less frequently. The interevent time
is ≳104 yr for all cases considered, and �M tends to be 7.5 or
less on the SAF (Fig. 21). The maximum sized SAF event is
of magnitude 7.6 or less, with neither average nor maximum
slip exceeding 3 m using Δσ � 5 MPa (Fig. 25). The rea-
sons for this include the use of a uniform distribution of
stress reduction Δσ and the choices of the values of Δσ
and D in the preceding simulations. The use of uniform
Δσ precludes the formation of asperities at fixed locations.
As pointed out in Determination of Earthquake Ruptures, the
average stress drop is generally less than Δσ, and this is the
case for the SAF (Fig. 25). The stress drop lies between σ �
σa and σ � σd, where σ is the pre-event stress level. Large
SAF ruptures typically propagate into low stress regions
where σ is much smaller than σs, so that the mean stress drop
of the event is generally only a fraction of σs � σa � Δσ.
The slip and stress drop patterns in Figure 25 also confirm
that with increasing D, cascade of a smaller event into a lar-
ger one is increasingly inhibited.

Because the models, which produce regular magnitude
∼7:8 on the SAF (Ward, 2000; Rundle et al., 2006b), use one-
dimensional fault geometries (i.e., no discretization in depth)
while the present simulations are discretized in depth, this

Figure 25. Maximum magnitude on the SAF and associated average stress drop, average slip, and maximum slip of the largest SAF
event, obtained in simulations as a function of D and Δσ.
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difference may partially contribute to the inability to produce
large SAF events. The condition that stress drops not exceed
5 MPa in preceding simulations severely limits the achiev-
able slip even in a long fault-rupture, and allowance for much
greater stress drop, at least locally, must be a prerequisite for

producing long ruptures with average slip ∼5 m and maxi-
mum slip ≳8 m. Figure 26 shows the magnitude-frequency
statistics obtained by increasing Δσ to 7 MPa, other factors
being equal. Comparison with Figure 21 shows that this
tends to raise �M by 0.05 to 0.2 magnitude units, depending

(a) (b) (c)

Figure 26. Same as Figure 21 except that Δσ � 7 MPa.
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on other parameters. It still fails to produce events of mag-
nitude ∼7:8 (Fig. 25).

In addition to the SAF discrepancy, observed b-values
for the SFBR as a whole are generally close to 1 (figure 4.5
of Working Group on California Earthquake Probabil-
ities, 2003). Individual natural faults also tend to exhibit
b-values close to 1 (Wesnousky, 1994). This is in contrast
to b-values of 1.3–1.7 obtained for individual faults in pre-
sent simulations. One mechanism for lowering b-value is to
decrease D to values near 1, that is, allowing little fault heal-
ing during a rupture. This mechanism, which is suggested by
comparing figures 7c,d of Ben–Zion et al. (2003) is found to
be effective for reducing b-values on all regional faults to
near 1 and raising the maximum magnitude of SAF events
to about 7.8. An alternative solution for increasing the
SAF mean characteristic magnitudes and lowering the b-va-
lues is to allow for strength heterogeneity. Inclusion of high-
strength regions is generally expected to raise the maximum
achievable slip on a given fault, and heterogeneous strength
is known to be effective at broadening the range of magni-
tude-frequency statistics (e.g., Ben–Zion and Rice, 1993,
1995, 1997). On the other hand, for a given mean fault
strength a limited range of strength heterogeneity is most ef-
fective in producing large ruptures on a smooth fault (e.g.,
the range of size scales parameter in section 5.2 of Ben–Zion,
2008), so that magnitude and b-value constraints on the SAF
could place respective upper and lower bounds on the accept-
able range of strength heterogeneity.

Conclusions

Statistical characterization of fault systems explored
here are based on numerical simulations of seismicity over
multiple fault cycles. The principal effects included in the
30,000 yr simulations are static stress transfer and viscoelas-
tic stress transfer, which are implemented in the context of
several interacting finite faults (finite in both length and
width), including dipping faults.

Using a cascade approach to rupture initiation, propaga-
tion, termination, and postseismic adjustment, we explore
the system behavior controlled by a few parameters. These
include the stress reduction Δσ, a dynamic overshoot para-
meter D, which allows a degree of healing on fault patches
while a synthetic rupture is underway, and the viscosity
structure, which is represented by the mantle viscosity ηm,
and which controls the rate of postseismic crustal stress ad-
justment. Although Δσ determines the overall magnitude of
ruptures, statistical properties of the system are controlled
primarily by D and ηm. For example, magnitude-frequency
patterns and COVare quite sensitive to both D and ηm. These
results suggest that in a multifault system statistical behavior
depends on the distribution of spatial scales (e.g., the relative
lengths of the faults; their separation distances as a fraction
of the depth to the relaxing lower crust) and temporal scales
(the Maxwell relaxation times of the lower crust and mantle,
the mean recurrence intervals on the faults).

Consistent patterns are obtained with respect to trigger-
ing capability of moderate events and the dependence of
COV on model parameters. In both the two-fault and SFBR
simulations, during a several-year period following a mod-
erate event, the chance of a large event is ∼20%–30% more
likely than the Poissonian probability of a large event occur-
ring over the same length of time. COV tends to decrease with
decreasing dynamic overshoot coefficient D, that is, large
earthquake occurrence is more regular the greater the amount
of dynamic weakening. COV also tends to decrease as the
viscosity of the ductile substrate decreases. Because the char-
acteristic earthquake magnitude also tends to increase as D
decreases, the greater regularity of earthquakes for smaller D
is, in part, the result of a greater proportion of earthquakes
occurring in large magnitude events that release the stress
built up over a long time interval; this is consistent with
the smaller a values generally obtained for smaller D. The
dependence of COV on ηm suggests that interaction of the
different timescales involved in mantle relaxation and inter-
wevent times plays a role in shaping COV.

Producing large (M ∼ 7:8) strike-slip ruptures on the
San Andreas fault in the SFBR simulations is problematic
using three-dimensional rupture mechanics, uniform fric-
tional properties on all faults, and Δσ ≲ 7 MPa; the same
result holds on a simpler two-fault system involving very
long parallel faults. These conditions also lead to magnitude
frequency b-values on all faults considerably greater than 1.
This suggests that either a large degree of dynamic weaken-
ing or substantial strength heterogeneity, likely involving
local stress drops far exceeding 7 MPa, is a prerequisite
for a cascade model to produce large strike-slip events
and b-values close to those observed in nature. It is an open
question whether these remedies, which are relevant to qua-
sistatic mechanics, are sufficient to resolve these discrepan-
cies or whether dynamic weakening mechanisms (e.g.,
thermal pressurization) in a dynamic rupture context are
necessary.

Data and Resources

No data were used in this article. Some plots were made
using Wessel and Smith’s Generic Mapping Tools version
4.2.1 (www.soest.hawaii.edu/gmt, last accessed August
2008).

Acknowledgments

I am grateful to Jeanne Hardebeck and Morgan Page for internal
reviews. This article benefitted from the constructive criticism of Roland
Bürgmann, Yehuda Ben–Zion, and an anonymous reviewer.

References

Ben–Zion, Y. (1996). Stress, slip, and earthquakes in models of complex
single-fault systems incorporating brittle and creep deformations, J.
Geophys. Res. 101, 5677–5706.

Ben–Zion, Y. (2001). Dynamic rupture in recent models of earthquake
faults., J. Mech. Phys. Solids 49, 2209–2244.

1784 F. F. Pollitz



Ben–Zion, Y. (2008). Collective behavior of earthquakes and faults: Con-
tinuum-discrete transitions, evolutionary changes and corresponding
dynamic regimes, Rev. Geophys. 46, doi 10.1029/2008rg000260.

Ben–Zion, Y., and J. R. Rice (1993). Earthquake failure sequences along a
cellular fault zone in a three-dimensional elastic solid containing as-
perity and nonasperity regions, J. Geophys. Res. 98, 14109–14131.

Ben–Zion, Y., and J. R. Rice (1995). Slip patterns and earthquake popula-
tions along different classes of faults in elastic solids, J. Geophys. Res.
100, 12959–12983.

Ben–Zion, Y., and J. R. Rice (1997). Dynamic simulations of slip on a
smooth fault in an elastic solid, J. Geophys. Res. 102, 17771–17784.

Ben–Zion, Y., K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon (1999).
Self-driven mode switching of earthquake activity on a fault system,
Earth Planet. Sci. Lett. 172, 11–21.

Ben–Zion, Y., M. Eneva, and Y. Liu (2003). Large earthquake cycles and
intermittent criticality on heterogeneous faults due to evolving
stress and seismicity, J. Geophys. Res. 108, 2307, doi 10.1029/
2002JB002121.

Ben–Zion, Y., J. R. Rice, and R. Dmowska (1993). Interaction of the San
Andreas fault creeping segment with adjacent great rupture zones, and
earthquake recurrence at Parkfield, J. Geophys. Res. 98, 2135–2144.

Feltzer, K. R., R. Abercrombie, and G. Ekström (2004). A common origin
for aftershocks, foreshocks, and multiplets, Bull. Seismol. Soc. Am. 94,
88–98.

King, G. C., R. S. Stein, and J. Lin (1994). Static stress changes and the
triggering of earthquakes, Bull. Seismol. Soc. Am. 84, 935–954.

Lyakhovsky, V., Y. Ben-Zion, and A. Agnon (2001). Earthquake cycle, fault
zones, and seismicity patterns in a rheologically layered lithosphere,
J. Geophys. Res. 106, 4103–4120.

Pollitz, F. F. (1996). Coseismic deformation from earthquake faulting on a
layered spherical earth, Geophys. J. Int. 125, 1–14.

Pollitz, F. F. (1997). Gravitational viscoelastic postseismic relaxation on a
layered spherical earth, J. Geophys. Res. 102, 17921–17941.

Pollitz, F. F. (2001). Viscoelastic shear zone model of a strike-slip earth-
quake cycle, J. Geophys. Res. 106, 26541–26560.

Pollitz, F. F., and M. C. J. Nyst (2004). A physical model for strain
accumulation in the San Francisco Bay Region, Geophys. J. Int.
160, 302–317.

Pollitz, F. F., and D. S. Schwartz (2008). Probabilistic seismic hazard in the
San Francisco Bay area based on a simplified viscoelastic-cycle model
of fault interactions, J. Geophys. Res. 113, B05409, doi 10.1029/
2007JB005227.

Richards–Dinger, K., and J. Dieterich (2007). Earthquake occurrence in
regional-scale fault models with rate- and state-dependent friction,
EOS 88, no. 52, Fall Meet. Suppl., abstract S21C–0719.

Rundle, J. B., P. B. Rundle, A. Donnellan, and G. Fox (2004). Gutenberg–
Richter statistics in topologically realistic system-level earthquake
stress-evolution simulations, Earth Planets Space 56, 761–771.

Rundle, J. B., P. B. Rundle, A. Donnellan, P. Li, D. L. Turcotte,
R. Shcsherbakov, P. Li, B. D. Malamud, L. B. Grant, G. C. Fox,
D. McLeod, G. Yakovlev, J. Parker, W. Klein, and K. F. Tiampo
(2005). A simulation-based approach to forecasting the next great
San Francisco earthquake, Proc. Nat. Acad. Sci. 102, 15363–15367.

Rundle, J. B., P. B. Rundle, A. Donnellan, P. Li, W. Klein, G. Morein, D. L.
Turcotte, and L. Grant (2006a). Stress transfer in earthquakes,
hazard estimation and ensemble forecasting inferences from numerical
simulations, Tectonophysics 413, 109–125.

Rundle, J. B., P. B. Rundle, K. F. Tiampo, A. Donnellan, and D. L. Turcotte
(2006b). Virtual California: Fault model, frictional parameters,
applications, Pure Appl. Geophys. 163, 1819–1846.

Savage, J. C. (1983). A dislocation model of strain accumulation and release
at a subduction zone, J. Geophys. Res. 88, 4984–4996.

Savage, J. C. (2000). Viscoelastic-coupling model for the earthquake cycle
driven from below, J. Geophys. Res. 105, 25525–25532.

Savage, J. C., and W. H. Prescott (1978). Asthenospheric readjustment and
the earthquake cycle, J. Geophys. Res. 83, 3369–3376.

Shaw, B. E., and J. R. Rice (2000). Existence of continuum complexity in the
elastodynamics of repeated fault ruptures, J. Geophys. Res. 105,
23791–23810.

Stein, R. S. (1999). The role of stress transfer in earthquake triggering,
Nature 402, 605–609.

Thatcher, W., G. Marshall, and M. Lisowski (1997). Resolution of fault slip
along the 470 km long rupture of the great 1906 San Francisco earth-
quake and its implications, J. Geophys. Res. 102, 5353–5367.

Ward, S. N. (2000). San Francisco Bay area earthquake simulations: A step
toward a standard physical earthquake model, Bull. Seismol. Soc. Am.
90, 370–386.

Ward, S. N., and S. D. B. Goes (1993). How regularly do earthquakes recur?
A synthetic seismicity model for the San Andreas fault, Geophys. Res.
Lett. 20, 2131–2134.

Wesnousky, S. G. (1994). The Gutenberg–Richter or characteristic
earthquake distribution, which is it? Bull. Seismol. Soc. Am. 84,
1940–1959.

Working Group on California Earthquake Probabilities (2003). Earthquake
probabilities in the San Francisco Bay region, U.S. Geol. Surv. Open-
File Rept. 03-214.

Youngs, R., and K. Coppersmith (1985). Implications of fault slip rates and
earthquake recurrence models to probabilistic seismic hazard
estimates, Bull. Seismol. Soc. Am. 75, 939–964.

USGS
Menlo Park, California

Manuscript received 27 August 2008

A Viscoelastic Earthquake Simulator with Application to the San Francisco Bay Region 1785


